Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(5)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37237691

RESUMO

Neurodegenerative diseases (NDDs), which are chronic and progressive diseases, are a growing health concern. Among the therapeutic methods, stem-cell-based therapy is an attractive approach to NDD treatment owing to stem cells' characteristics such as their angiogenic ability, anti-inflammatory, paracrine, and anti-apoptotic effects, and homing ability to the damaged brain region. Human bone-marrow-derived mesenchymal stem cells (hBM-MSCs) are attractive NDD therapeutic agents owing to their widespread availability, easy attainability and in vitro manipulation and the lack of ethical issues. Ex vivo hBM-MSC expansion before transplantation is essential because of the low cell numbers in bone marrow aspirates. However, hBM-MSC quality decreases over time after detachment from culture dishes, and the ability of hBM-MSCs to differentiate after detachment from culture dishes remains poorly understood. Conventional analysis of hBM-MSCs characteristics before transplantation into the brain has several limitations. However, omics analyses provide more comprehensive molecular profiling of multifactorial biological systems. Omics and machine learning approaches can handle big data and provide more detailed characterization of hBM-MSCs. Here, we provide a brief review on the application of hBM-MSCs in the treatment of NDDs and an overview of integrated omics analysis of the quality and differentiation ability of hBM-MSCs detached from culture dishes for successful stem cell therapy.

2.
Theranostics ; 12(8): 3676-3689, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664056

RESUMO

Understanding cancer heterogeneity is essential to finding diverse genetic mutations in metastatic cancers. Thus, it is critical to isolate all types of CTCs to identify accurate cancer information from patients. Moreover, full automation robustly capturing the full spectrum of CTCs is an urgent need for CTC diagnosis to be routine clinical practice. Methods: Here we report the full capture of heterogeneous CTC populations using fully automated, negative depletion-based continuous centrifugal microfluidics (CCM). Results: The CCM system demonstrated high performance (recovery rates exceeding 90% and WBC depletion rate of 99.9%) across a wide range of phenotypes (EpCAM(+), EpCAM(-), small-, large-sized, and cluster) and cancers (lung, breast, and bladder). Applied in 30 lung adenocarcinoma patients harboring epidermal growth factor receptor (EGFR) mutations, the system isolated diverse phenotypes of CTCs in marker expression and size, implying the importance of unbiased isolation. Genetic analyses of intra-patient samples comparing cell-free DNA with CCM-isolated CTCs yielded perfect concordance, and CTC enumeration using our technique was correlated with clinical progression as well as response to EGFR inhibitors. Conclusion: Our system also introduces technical advances which assure rapid, reliable, and reproducible results, thus enabling a more comprehensive application of robust CTC analysis in clinical practice.


Assuntos
Células Neoplásicas Circulantes , Automação , Linhagem Celular Tumoral , Separação Celular/métodos , Molécula de Adesão da Célula Epitelial/genética , Receptores ErbB/genética , Humanos , Microfluídica/métodos , Células Neoplásicas Circulantes/metabolismo
3.
Biomater Sci ; 10(15): 4293-4308, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35766864

RESUMO

Oncolytic virotherapy is a highly promising and novel treatment modality for cancer. Several clinical trials with oncolytic viruses have illustrated that the potent antitumor efficacy of these viruses may rely on the efficient induction of antitumor immune response. In contrast, antiviral immune response is attributed to adverse side defects and diminishing therapeutic efficacy. In the present report, we generated a nanohybrid complex incorporating immune stimulatory oncolytic adenovirus (oAd) co-expressing decorin (DCN) and interleukin (IL)-12 with a bioreducible nanomaterial composed of PEI-Arg-mPEG-S-S-mPEG-Arg-PEI blocks (PAPS), ultimately aiming to modulate both antitumor and antiviral immune responses to be favorable toward oncolytic virotherapy. The transduction efficacy of the PAPS-incorporated nanohybrid vector (Ad/PAPS) was significantly higher than that of a complex using our previously reported polymer PPSA (Ad/PPSA) regardless of the cellular coxsackievirus and adenovirus receptor expression level of cancer cells. oAd complexed with PAPS (oAd/PAPS) also elicited a more potent cancer cell killing effect, antitumor efficacy, and metastasis inhibition than naked oAd or oAd complexed with PPSA (oAd/PPSA) through a higher level of therapeutic transgenes (DCN and IL-12), viral replication, and more efficient infiltration of T cells into tumor tissues. Notably, oAd/PAPS induced the highest level of antitumor immune response while the antiviral immune response was mediated at a significantly lower level than those of naked oAd. Adaptive immune response against the virus was also significantly attenuated in the oAd/PAPS group. oAd/PAPS treatment also led to the highest level of antitumor central memory T cells and the lowest level of immunosuppressive regulatory T cells in the spleen. Collectively, our findings illustrate that oAd/PAPS can simultaneously regulate both antitumor and antiviral immune responses to be more favorable to oncolytic virotherapy, leading to improved gene expression, viral replication, and growth inhibition of both primary and metastatic tumors.


Assuntos
Adenoviridae , Terapia Viral Oncolítica , Imunidade Adaptativa , Adenoviridae/genética , Adenoviridae/metabolismo , Antivirais , Linhagem Celular Tumoral , Interleucina-12/metabolismo , Polímeros/metabolismo
4.
Sensors (Basel) ; 21(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073449

RESUMO

Wi-Fi round-trip timing (RTT) was applied to indoor positioning systems based on distance estimation. RTT has a higher reception instability than the received signal strength indicator (RSSI)-based fingerprint in non-line-of-sight (NLOS) environments with many obstacles, resulting in large positioning errors due to multipath fading. To solve these problems, in this paper, we propose high-precision RTT-based indoor positioning system using an RTT compensation distance network (RCDN) and a region proposal network (RPN). The proposed method consists of a CNN-based RCDN for improving the prediction accuracy and learning rate of the received distances and a recurrent neural network-based RPN for real-time positioning, implemented in an end-to-end manner. The proposed RCDN collects and corrects a stable and reliable distance prediction value from each RTT transmitter by applying a scanning step to increase the reception rate of the TOF-based RTT with unstable reception. In addition, the user location is derived using the fingerprint-based location determination method through the RPN in which division processing is applied to the distances of the RTT corrected in the RCDN using the characteristics of the fast-sampling period.

5.
Cancer Discov ; 10(8): 1194-1209, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32414908

RESUMO

EGFR exon 20 insertion driver mutations (Exon20ins) in non-small cell lung cancer (NSCLC) are insensitive to EGFR tyrosine kinase inhibitors (TKI). Amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR-MET, has shown preclinical activity in TKI-sensitive EGFR-mutated NSCLC models and in an ongoing first-in-human study in patients with advanced NSCLC. However, the activity of amivantamab in Exon20ins-driven tumors has not yet been described. Ba/F3 cells and patient-derived cells/organoids/xenograft models harboring diverse Exon20ins were used to characterize the antitumor mechanism of amivantamab. Amivantamab inhibited proliferation by effectively downmodulating EGFR-MET levels and inducing immune-directed antitumor activity with increased IFNγ secretion in various models. Importantly, in vivo efficacy of amivantamab was superior to cetuximab or poziotinib, an experimental Exon20ins-targeted TKI. Amivantamab produced robust tumor responses in two Exon20ins patients, highlighting the important translational nature of this preclinical work. These findings provide mechanistic insight into the activity of amivantamab and support its continued clinical development in Exon20ins patients, an area of high unmet medical need. SIGNIFICANCE: Currently, there are no approved targeted therapies for EGFR Exon20ins-driven NSCLC. Preclinical data shown here, together with promising clinical activity in an ongoing phase I study, strongly support further clinical investigation of amivantamab in EGFR Exon20ins-driven NSCLC.This article is highlighted in the In This Issue feature, p. 1079.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Animais , Anticorpos Biespecíficos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Éxons , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/metabolismo
6.
Adv Sci (Weinh) ; 6(14): 1801995, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31380199

RESUMO

Perturbation of potassium homeostasis can affect various cell functions and lead to the onset of programmed cell death. Although ionophores have been intensively used as an ion homeostasis disturber, the mechanisms of cell death are unclear and the bioapplicability is limited. In this study, helical polypeptide-based potassium ionophores are developed to induce endoplasmic reticulum (ER) stress-mediated apoptosis. The polypeptide-based potassium ionophores disturb ion homeostasis and then induce prolonged ER stress in the cells. The ER stress results in oxidative environments that accelerate the activation of mitochondria-dependent apoptosis. Moreover, ER stress-mediated apoptosis is triggered in a tumor-bearing mouse model that suppresses tumor proliferation. This study provides the first evidence showing that helical polypeptide-based potassium ionophores trigger ER stress-mediated apoptosis by perturbation of potassium homeostasis.

7.
Biomaterials ; 197: 51-59, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30640137

RESUMO

Mitochondria are the primary organelle of regulating apoptosis, and intracellular calcium ions are a key component of pro-apoptosis induction. Herein, we report an artificial apoptosis-inducing polypeptide that destabilizes the mitochondrial membrane and transports calcium ions into the cytosol, thereby synergistically creating severe oxidative conditions. The oxidative stress highly activates an apoptotic signaling cascade, and also inhibits cell migration and invasion in vitro and in vivo. The suggested strategy for simultaneous mitochondrial disruption and perturbed calcium homeostasis demonstrates the applicability of polypeptide-based therapeutics as potent apoptosis-inducers in cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Desenvolvimento de Medicamentos , Humanos , Camundongos , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/patologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Estresse Oxidativo/efeitos dos fármacos , Peptídeos/química , Peptídeos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
8.
Biomaterials ; 145: 207-222, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28869866

RESUMO

Combination treatment consisting of oncolytic adenovirus (Ad) and paclitaxel (PTX) is a promising strategy to achieve synergistic antitumor effect. However, a co-administration approach is subject to inherent limitations due to the poor solubility of PTX and chemoresistance of tumor cells. In order to overcome these limitations, an oncolytic Ad expressing a p53 variant (oAd-vp53) that is resistant to p53 inactivation in the tumor microenvironment was complexed with PEGylated and PTX-conjugated polymeric micelle (APP). This approach generated an oAd-vp53/APP complex (176.4 nm in diameter) that could concurrently deliver both oncolytic Ad and the nanoparticulate drug APP to tumors. APP-complexed replication-incompetent Ad (dAd/APP) exhibited 12-fold higher transduction efficiency than naked dAd in coxsackie adenovirus receptor (CAR)-negative cancer cells. This increased efficiency was attributed to more efficient cellular internalization mediated by charge interactions between APP and anionic cell membranes. Furthermore, oAd-vp53/APP elicited synergistically higher cancer cell killing than naked oAd-vp53, APP, or oAd-vp53 in combination with PTX (oAd-vp53 + PTX); this synergistic effect was shown to be due to superior induction of apoptosis and viral replication. Importantly, oAd-vp53/APP induced more potent and synergistic antitumor effect through both local and systemic administration by enhancing replication of oncolytic Ad and induction of apoptosis in tumor tissue. Further, the APP coating on the surface of Ad markedly attenuated the host immune response against Ad and decreased hepatic sequestration, resulting in minimal hepatotoxicity and a good safety profile. These attributes enabled oAd-vp53/APP to elicit potent antitumor effect over multiple treatment cycles. Altogether, we demonstrate that concurrent delivery of oncolytic Ad and APP as a single nanocomplex is a promising strategy for achieving synergistic antitumor effect.


Assuntos
Adenoviridae/fisiologia , Antineoplásicos/farmacologia , Micelas , Vírus Oncolíticos/fisiologia , Paclitaxel/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/patologia , Paclitaxel/administração & dosagem , Polímeros/química , Células RAW 264.7 , Distribuição Tecidual/efeitos dos fármacos , Transdução Genética , Replicação Viral/efeitos dos fármacos
9.
J Control Release ; 264: 24-33, 2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-28778477

RESUMO

Artificial cationic helical peptides possess an enhanced cell-penetrating property. However, their cell-penetrability is not converted by cellular environmental changes resulting in nonspecific uptake. In this study, pH-sensitive anion-donating groups were added to a helical polypeptide to simultaneously achieve tumor targeting and pro-apoptotic activity. The mitochondria-destabilizing helical polypeptide undergoing pH-dependent conformational transitions selectively targeted cancer cells consequently disrupting mitochondrial membranes and subsequently inducing apoptosis. This work presents a promising peptide therapeutic system for cancer therapy.


Assuntos
Antineoplásicos/uso terapêutico , Peptídeos/uso terapêutico , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Peptídeos/química , Conformação Proteica , Espécies Reativas de Oxigênio/metabolismo , Carga Tumoral/efeitos dos fármacos
10.
Neuroreport ; 28(14): 929-935, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28817455

RESUMO

During spinal cord development, endogenous progenitors expressing nestin can migrate into the target and differentiate into neurons and other glial cells. Microglial cells can also be derived from nestin progenitor cells, even in the adult brain. Knockdown of Jak kinase 3 (Jak3) signaling can increase neurogenesis with longer neurite outgrowth in cortical progenitor cells. This study investigated the effect of Jak3 signaling on differentiation from nestin progenitor cells using E13.5 spinal progenitor cell cultures. In growth factors-enriched culture, developing neurons could not survive after several days and also a significant proportion of nestin-expressing cells transformed into ameboid Iba1 microglial cells, which increased exponentially after 5 days. This microgliogenesis was predominantly regulated by Jak3 signaling, which was confirmed by transcription factors responsible for microgliogenesis, and microglial migration and phagocytosis, such as Pu.1, Irf8, and Runx1. Jak3 inhibition also significantly increased the Tuj1 growing neurites with little microglial activation. These results indicated that neuronal and microglial cell differentiation was regulated primarily by Jak3 signaling and the developing neurons and neurite outgrowth might also be regulated by Jak3-dependent microglial activity.


Assuntos
Diferenciação Celular/fisiologia , Janus Quinase 3/metabolismo , Microglia/metabolismo , Nestina/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Janus Quinase 3/antagonistas & inibidores , Janus Quinase 3/genética , Camundongos Endogâmicos ICR , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/embriologia , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo
11.
Neuroscience ; 340: 487-500, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27845178

RESUMO

Deregulation of glutamate homeostasis is associated with degenerative neurological disorders. Glutamate dehydrogenase (GDH) is important for glutamate metabolism and plays a central role in expanding the pool of tricarboxylic acid (TCA) cycle intermediate alpha-ketoglutarate (α-KG), which improves overall bioenergetics. Under high energy demand, maintenance of ATP production results in functionally active mitochondria. Here, we tested whether the modulation of GDH activity can rescue ischemia/reperfusion-induced neuronal death in an in vivo mouse model of middle artery occlusion and an in vitro oxygen/glucose depletion model. Iodoacetate, an inhibitor of glycolysis, was also used in a model of energy failure, remarkably depleting ATP and α-KG. To stimulate GDH activity, the GDH activator 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid and potential activator beta-lapachone were used. The GDH activators restored α-KG and ATP levels in the injury models and provided potent neuroprotection. We also found that beta-lapachone increased glutamate utilization, accompanied by a reduction in extracellular glutamate. Thus, our hypothesis that mitochondrial GDH activators increase α-KG production as an alternative energy source for use in the TCA cycle under energy-depleted conditions was confirmed. Our results suggest that increasing GDH-mediated glutamate oxidation represents a new therapeutic intervention for neurodegenerative disorders, including stoke.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Glutamato Desidrogenase/metabolismo , Naftoquinonas/farmacologia , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/enzimologia , Astrócitos/patologia , Encéfalo/enzimologia , Encéfalo/patologia , Isquemia Encefálica/enzimologia , Isquemia Encefálica/patologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média , Masculino , Camundongos Endogâmicos ICR , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/patologia , Distribuição Aleatória , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/patologia
12.
Sci Rep ; 6: 29095, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27378605

RESUMO

The potential toxicity of nanoparticles, particularly to neurons, is a major concern. In this study, we assessed the cytotoxicity of silica-coated magnetic nanoparticles containing rhodamine B isothiocyanate dye (MNPs@SiO2(RITC)) in HEK293 cells, SH-SY5Y cells, and rat primary cortical and dopaminergic neurons. In cells treated with 1.0 µg/µl MNPs@SiO2(RITC), the expression of several genes related to the proteasome pathway was altered, and proteasome activity was significantly reduced, compared with control and with 0.1 µg/µl MNPs@SiO2(RITC)-treated cells. Due to the reduction of proteasome activity, formation of cytoplasmic inclusions increased significantly in HEK293 cells over-expressing the α-synuclein interacting protein synphilin-1 as well as in primary cortical and dopaminergic neurons. Primary neurons, particularly dopaminergic neurons, were more vulnerable to MNPs@SiO2(RITC) than SH-SY5Y cells. Cellular polyamines, which are associated with protein aggregation, were significantly altered in SH-SY5Y cells treated with MNPs@SiO2(RITC). These findings highlight the mechanisms of neurotoxicity incurred by nanoparticles.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Corpos de Inclusão/efeitos dos fármacos , Nanopartículas de Magnetita/efeitos adversos , alfa-Sinucleína/genética , Animais , Neurônios Dopaminérgicos/patologia , Células HEK293 , Humanos , Nanopartículas de Magnetita/química , Cultura Primária de Células , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/genética , Agregação Patológica de Proteínas/induzido quimicamente , Ratos , Rodaminas/química , Dióxido de Silício/efeitos adversos , Dióxido de Silício/química
13.
Acta Biomater ; 28: 86-98, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26365317

RESUMO

Oncolytic adenovirus (Ad) holds great promise as a potential gene therapy for cancer. However, intravenously administered Ad may encounter difficulties due to unfavorable host responses, non-specific interactions, and the heterogeneity of the tumor cell population. As an approach to combine the advantages of oncolytic Ad and synthetic polymers and to address the associated difficulties, Ad was physically complexed with a pH-sensitive block copolymer, methoxy poly(ethylene glycol)-b-poly(l-histidine) (mPEG-b-pHis). The in vitro transduction efficiency at an acidic extracellular pH was remarkably enhanced in cancer cells when treated with the Ad expressing green fluorescent protein (GFP) coated with mPEG-b-pHis (c-dE1/GFP) as compared to that of naked Ad (n-dE1/GFP). Time-lapse total internal reflection fluorescence microscopic imaging revealed a significantly enhanced cellular uptake rate of c-dE1/GFP at acidic tumor pH when compared with that at neutral pH or naked cognate Ad (n-dE1/GFP). In addition, c-dE1/GFP remained relatively stable in human serum-containing media, and considerably reduced both the innate and adaptive immune response against Ad. Moreover, the therapeutic efficacy and survival benefit of mPEG-b-pHis-complexed oncolytic Ad (c-H5mT/Luc) by systemic treatment was significantly enhanced compared to that with naked oncolytic Ad (n-H5mT/Luc) in both coxsackie and adenovirus receptor-positive and -negative tumors. Whole-body bioluminescence imaging showed 7.3-fold higher luciferase expression at the tumor site and 23.0-fold less luciferase expression in liver tissue for c-H5mT/Luc relative to that for naked oncolytic Ad (n-H5mT/Luc). Considering the heterogeneity of tumor tissue, these results are important for guiding the development of more potent and specific treatment of devastating metastatic cancers using this viral system. STATEMENT OF SIGNIFICANCE: Although adenoviral systems have shown considerable promise and undergone extensive evaluation attempts to specifically target Ad vectors to cancer cells have met limited success. This shortcoming is due to the strong immune response stimulated by Ad and the hepatotoxicity of the viral particles. To overcome restricted vector issues, we generated Ad/mPEG-b-pHis for tumor microenvironment-targeting hybrid vector systems, an oncolytic Ad coated with a pH-responsive polymer, mPEG-b-pHis. The Ad/mPEG-b-pHis exhibited pH-dependent transduction efficiency and cancer-cell killing effects. Moreover, systemic administration of oncolytic Ad/mPEG-b-pHis led to marked suppression of tumor growth and tumor-specific viral replication. Ad successfully avoided the innate and adaptive immune responses and liver accumulation with the help of mPEG-b-pHis on its surface.


Assuntos
Neoplasias/terapia , Terapia Viral Oncolítica , Microambiente Tumoral , Animais , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Int Immunopharmacol ; 26(1): 203-11, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25843256

RESUMO

Fructose-1,6-bisphosphate (FBP) is a glycolytic intermediate with salutary effects in various brain injury models, but its neuroprotective mechanism is incompletely understood. In this study, we examined the effects of FBP on the expression of adhesion molecules in cerebrovascular endothelial cells and explored the possible mechanisms therein involved. FBP significantly down-regulated lipopolysaccharide (LPS)-induced expression of adhesion molecules and leukocyte adhesion to brain endothelial cells and inhibited NF-κB activity, which is implicated in the expression of adhesion molecules. FBP abrogated ICAM-1 expression and NF-κB activation induced by macrophage-activating lipopeptide 2-kDa (MALP-2) or overexpression of MyD88 or TRAF6. FBP suppressed TRAF6-induced phosphorylation of TAK1, IKKß and IκBα, but fail to affect NF-κB activity induced by ectopic expression of IKKß. In addition, LPS-induced IRAK-1 phosphorylation was inhibited by FBP, suggesting the presence of multiple molecular targets of FBP in MyD88-dependent signaling pathway. FBP significantly attenuated ICAM-1 expression and NF-κB activity induced by poly[I:C] or overexpression of TRIF or TBK1. FBP significantly repressed the expression of interferon-ß (IFN-ß) and the activation of IFN regulatory factor 3 (IRF3) induced by LPS, poly[I:C] or overexpression of TRIF or TBK1, but fail to affect IRF3 activity induced by ectopic expression of constitutively active IRF3. Overall, our results demonstrate that FBP modulates both MyD88- and TRIF-dependent signaling pathways of TLR4 and subsequent inflammatory responses in brain endothelial cells, providing insight into its neuroprotective mechanism in brain injury associated with inflammation.


Assuntos
Encéfalo/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Frutosedifosfatos/farmacologia , Molécula 1 de Adesão Intercelular/biossíntese , Fármacos Neuroprotetores/farmacologia , Receptor 4 Toll-Like/metabolismo , Animais , Encéfalo/irrigação sanguínea , Encéfalo/imunologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/imunologia , Linhagem Celular , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Ensaio de Imunoadsorção Enzimática , Frutosedifosfatos/administração & dosagem , Humanos , Lipopolissacarídeos/farmacologia , Camundongos , Fármacos Neuroprotetores/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Células U937
15.
Eur J Pharmacol ; 754: 11-8, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25704611

RESUMO

Inflammation has been implicated in the pathogenesis of various cerebral diseases. Thus, control of brain inflammation is regarded as one of the important therapeutic strategies for the treatment of neurodegenerative diseases such as Alzheimer׳s disease and stroke. Isobavachalcone, a flavonoid from Psoralea corylifolia, is known to possess a wide spectrum of biological activities and is expected to be useful in preventing or treating neurodegenerative diseases. However, very little is known regarding its effects on cerebral inflammation. In this study, we examined the effect of isobavachalcone on leukocyte adhesion and intercellular adhesion molecule-1 (ICAM-1) expression in brain endothelial cells activated with lipopolysaccharide (LPS) and explored the possible mechanisms involved. Isobavachalcone significantly down-regulated LPS-induced ICAM-1 expression and leukocyte-endothelial cell adhesion and suppressed NF-κB activity which is implicated in the expression of ICAM-1. It attenuated ICAM-1 expression as well as NF-κB transcriptional activity induced by macrophage-activating lipopeptide 2-kDa (MALP-2) or polyriboinosinic polyribocytidylic acid (poly[I:C]). Isobavachalcone also down-regulated LPS or poly[I:C]-induced expression of IFN-ß, which can indirectly activate NF-κB. These data imply that isobavachalcone can modulate both MyD88-dependent and TRIF-dependent signaling of toll-like receptor 4 (TLR4). Taken together, our data suggest that isobavachalcone inhibits LPS-induced ICAM-1 expression and leukocyte adhesion to brain endothelial cell by blocking TLR4 signaling and thus, has the potential to ameliorate neuronal injury in brain diseases associated with inflammation.


Assuntos
Encéfalo/citologia , Chalconas/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Encéfalo/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-6/metabolismo , Lipopeptídeos/antagonistas & inibidores , Lipopeptídeos/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , NF-kappa B/metabolismo , Poli I-C/antagonistas & inibidores , Poli I-C/farmacologia
16.
Biomacromolecules ; 16(1): 87-96, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25400213

RESUMO

Adenovirus (Ad) vectors show promise as cancer gene therapy delivery vehicles, but immunogenic safety concerns and coxsackie and adenovirus receptor (CAR)-dependency have limited their use. Alternately, biocompatible and bioreducible nonviral vectors, including arginine-grafted cationic polymers, have been shown to deliver nucleic acids through a cell penetration peptide (CPP) and protein transduction domain (PTD) effect. We utilized the advantages of both viral and nonviral vectors to develop a hybrid gene delivery vehicle by coating Ad with mPEG-PEI-g-Arg-S-S-Arg-g-PEI-mPEG (Ad/PPSA). Characterization of Ad/PPSA particle size and zeta potential showed an overall size and cationic charge increase in a polymer concentration-dependent manner. Ad/PPSA also showed a marked transduction efficiency increase in both CAR-negative and -positive cells compared to naked Ad. Competition assays demonstrated that Ad/PPSA produced higher transgene expression levels than naked Ad and achieved CAR-independent transduction. Oncolytic Ad (DWP418)/PPSA was able to overcome the nonspecificity of polymer-only therapies by demonstrating cancer-specific killing effects. Furthermore, the DWP418/PPSA nanocomplex elicited a 2.24-fold greater antitumor efficacy than naked Ad in vivo. This was supported by immunohistochemical confirmation of Ad E1As accumulation in MCF7 xenografted tumors. Lastly, intravenous injection of DWP418/PPSA elicited less innate immune response compared to naked Ad, evaluated by interleukin-6 cytokine release into the serum. The increased antitumor effect and improved vector targeting to both CAR-negative and -positive cells make DWP418/PPSA a promising tool for cancer gene therapy.


Assuntos
Adenoviridae/química , Antineoplásicos/química , Materiais Biocompatíveis/química , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Vírus Oncolíticos/química , Polímeros/química , Animais , Antineoplásicos/administração & dosagem , Materiais Biocompatíveis/administração & dosagem , Feminino , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Terapia Viral Oncolítica/métodos , Polímeros/administração & dosagem , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
17.
Mol Cells ; 37(10): 759-65, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25256221

RESUMO

N-myc downstream-regulated gene 2 (NDRG2), which is known to have tumor suppressor functions, is frequently down-regulated in breast cancers and potentially involved in preventing the migration and invasion of malignant tumor cells. In the present study, we examined the inhibitory effects of NDRG2 overexpression, specifically focusing on the role of cyclooxygenase-2 (COX-2) in the migration of breast cancer cells. NDRG2 overexpression in MDA-MB-231 cells inhibited the expression of the COX-2 mRNA and protein, the transcriptional activity of COX-2, and prostaglandin E2 (PGE2) production, which were induced by a treatment with phorbol-12-myristate-13-acetate (PMA). Nuclear transcription factor-κB (NF-κB) signaling attenuated by NDRG2 expression resulted in a decrease in PMA-induced COX-2 expression. Interestingly, the inhibition of COX-2 strongly suppressed PMA-stimulated migration and invasion in MDA-MB-231-NDRG2 cells. Moreover, siRNA-mediated knockdown of NDRG2 in MCF7 cells increased the COX-2 mRNA and protein expression levels and the PMA-induced COX-2 expression levels. Consistent with these results, the migration and invasion of MCF7 cells treated with NDRG2 siRNA were significantly enhanced following treatment with PMA. Taken together, our data show that the inhibition of NF-κB signaling by NDRG2 expression is able to suppress cell migration and invasion through the down-regulation of COX-2 expression.


Assuntos
Neoplasias da Mama/patologia , Ciclo-Oxigenase 2/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Neoplasias da Mama/metabolismo , Movimento Celular/genética , Ciclo-Oxigenase 2/genética , Dinoprostona/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Células MCF-7 , NF-kappa B/metabolismo , Invasividade Neoplásica , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Transgenes/genética , Proteínas Supressoras de Tumor/genética
18.
J Nutr Sci Vitaminol (Tokyo) ; 60(3): 159-66, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25078371

RESUMO

Declining renal function is commonly observed with age. Obesity induced by a high-fat diet (HFD) may reduce renal function. Korean red ginseng (KRG) has been reported to ameliorate oxidative tissue injury and have an anti-aging effect. This study was designed to investigate whether HFD would accelerate the D-galactose-induced aging process in the rat kidney and to examine the preventive effect of KRG on HFD and D-galactose-induced aging-related renal injury. When rats with D-galactose-induced aging were fed an HFD for 9 wk, enhanced oxidative DNA damage, renal cell apoptosis, protein glycation, and extracellular high mobility group box 1 protein (HMGB1), a signal of tissue damage, were observed in renal glomerular cells and tubular epithelial cells. However, treatment of rats with HFD- plus D-galactose-induced aging with KRG restored all of these renal changes. Our data suggested that a long-term HFD may enhance D-galactose-induced oxidative renal injury in rats and that this age-related renal injury could be suppressed by KRG through the repression of oxidative injury.


Assuntos
Envelhecimento , Dieta Hiperlipídica/efeitos adversos , Nefropatias/prevenção & controle , Estresse Oxidativo , Panax/química , Extratos Vegetais/uso terapêutico , Animais , Apoptose , Dano ao DNA , Galactose/efeitos adversos , Glicosilação , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Rim/fisiopatologia , Masculino , Fitoterapia , Ratos , Ratos Sprague-Dawley , República da Coreia
19.
Exp Neurol ; 249: 95-103, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24005111

RESUMO

The immature brain is prone to seizure; however, the mechanism underlying this vulnerability has not been clarified. Febrile seizure is common in young children, and the use of non-steroidal anti-inflammatory drugs for febrile seizure is not recommended. In previous studies, we established that prostaglandin (PG) F2α, a product of cyclooxygenase (COX), acts as an endogenous anticonvulsant in the adult mouse. Therefore, we assumed that COX-2 activity was involved with seizure susceptibility in early life. In the present study, immature mice (postnatal day 9) were far more prone to kainic acid (KA)-induced seizures than mature mice (after postnatal day 35). Seizure activity began later in immature mice, but was more severe and was unaffected by a potent COX inhibitor, indomethacin; in contrast, indomethacin aggravated seizure activity in mature mice. Immature mouse brains exhibited little basal COX-2 expression and little KA-induced COX-2 induction, while KA-induced COX-2 expression and PGF2α release were prominent in mature brains. During brain development, COX expression was increased and glycosylated in an age-dependent manner, which was necessary for COX enzyme activity. Intracisternal PGF2α administration also reduced KA-induced seizure activity and mortality. Taken together, low COX activity and the resulting deficiency of PGF2α may be an essential cause of increased seizure susceptibility in the immature brain.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Ciclo-Oxigenase 2/biossíntese , Dinoprosta/biossíntese , Convulsões/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Células Cultivadas , Dinoprosta/administração & dosagem , Suscetibilidade a Doenças , Glicosilação , Camundongos , Regulação para Cima/fisiologia
20.
Arch Pharm Res ; 36(9): 1149-59, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23604722

RESUMO

Fructose-1,6-bisphosphate (FBP), a glycolytic intermediate, has neuroprotective effects in various brain injury models. However, its effects on blood-brain barrier (BBB) are largely unknown. In this study, we investigated the effects of FBP on lipopolysaccharide (LPS)-induced BBB dysfunction in in vitro BBB model comprising co-culture of mouse brain endothelial cell line, bEnd.3 and mouse primary astrocyte and explored its action mechanism therein involved. LPS induced the impairment of endothelial permeability and transendothelial electrical resistance (TEER). The functional changes were confirmed by alterations in immunostaining for junctional proteins occludin, ZO-1 and VE-cadherin, such as the loss of cortical staining pattern and appearance of intercellular gaps in endothelial cells. Co-administration of FBP alleviated the deleterious effects of LPS on BBB permeability and TEER in a dose dependent manner. And also FBP inhibited the LPS-induced changes in the distribution of endothelial junctional proteins, resulting in the better preservation of monolayer integrity. FBP suppressed the production of reactive oxygen species (ROS) but did not affect cyclooxygenase-2 expression and prostaglandin E2 production in endothelial cells stimulated with LPS. Taken together, these data suggest that FBP could ameliorate LPS-induced BBB dysfunction through the maintenance of junctional integrity, which might be mediated by downregulation of ROS production.


Assuntos
Astrócitos/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Frutosedifosfatos/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Animais Recém-Nascidos , Astrócitos/citologia , Astrócitos/metabolismo , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/metabolismo , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Técnicas de Cocultura , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos ICR , Ratos , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...